Apolipoprotein E inhibition of vascular smooth muscle cell proliferation but not the inhibition of migration is mediated through activation of inducible nitric oxide synthase.
نویسندگان
چکیده
Initial experiments revealed that low concentrations of apolipoprotein (apo) E (0.1 to 5 microg/mL) were effective in inhibiting platelet-derived growth factor (PDGF)-directed smooth muscle cell (SMC) migration by 60% to 80%. In contrast, higher concentrations of apoE, at 25 and 50 microg/mL, were necessary to achieve similar inhibition of PDGF-induced SMC proliferation. The potential role of nitric oxide (NO) in mediating the inhibitory effects of apoE was explored. Results showed that, although 0.1 to 5 microg/mL of apoE had no effect on NO production by SMCs, physiological concentrations of apoE (25 to 50 microg/mL) enhanced NO synthesis by 2-fold in a dose-dependent manner (P<0.001). Reverse transcription-polymerase chain reaction amplification of RNA obtained from control and apoE-treated SMCs demonstrated a direct role of apoE in activating inducible nitric oxide synthase (iNOS) gene expression. The apoE-induced nitric oxide production was significantly reduced by coincubation of the cells with aminoguanidine or N(G)-monomethyl-L-arginine (P<0.05) or with antisense iNOS oligodeoxynucleotides (P<0.01). Moreover, the inhibition of iNOS was shown to overcome apoE suppression of PDGF-induced vascular SMC proliferation. However, apoE suppression of PDGF-directed SMC migration was not affected by these treatments. Taken together, these results document that apoE exerts its inhibitory effects on cell proliferation via activation of iNOS. However, apoE inhibition of cell migration is mediated by a mechanism independent of iNOS activation.
منابع مشابه
Apolipoprotein E inhibition of vascular hyperplasia and neointima formation requires inducible nitric oxide synthase.
Previous studies have shown apolipoprotein E (apoE) recruitment to medial layers of carotid arteries after vascular injury in vivo and apoE activation of inducible nitric oxide synthase (iNOS) in smooth muscle cells in vitro. This investigation explored the relationship between medial apoE recruitment and iNOS activation in protection against neointimal hyperplasia. ApoE was present in both neo...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملInducible nitric oxide synthase and vascular injury.
The role nitric oxide (NO) plays in the cardiovascular system is complex and diverse. Even more controversial is the role that the inducible NO synthase enzyme (iNOS) serves in mediating different aspects of cardiovascular pathophysiology. Following arterial injury, NO has been shown to serve many vasoprotective roles, including inhibition of platelet aggregation and adherence to the site of in...
متن کاملTanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 20 4 شماره
صفحات -
تاریخ انتشار 2000